Maximum Bipartite Subgraph of Geometric Intersection Graphs

09/09/2019
by   Satyabrata Jana, et al.
0

We study the Maximum Bipartite Subgraph(MBS) problem, which is defined as follows. Given a set S of n geometric objects in the plane, we want to compute a maximum-size subset S'⊆ S such that the intersection graph of the objects in S' is bipartite. We first show that the MBS problem is NP-hard on geometric graphs for which the maximum independent set is NP-hard (hence, it is NP-hard even on unit squares and unit disks). On the algorithmic side, we first give a simple O(n)-time algorithm that solves the MBS problem on a set of n intervals. Then, we give an O(nlog n)-time algorithm that computes a near-optimal solution for the problem on circular-arc graphs. Moreover, for the approximability of the problem, we first present a PTAS for the problem on unit squares and unit disks that runs in in O(f(n) n^1/ϵ) time for any ϵ>0,where f(n) is a computable function that is polynomial in n. Then, we present efficient approximation algorithms with small-constant factors for the problem on unit squares, unit disks and unit-height rectangles. Finally, we study a closely related geometric problem, called Maximum Triangle-free Subgraph (TFS), where the objective is the same as that of MBS except the intersection graph induced by the set S' needs to be triangle-free only (instead of being bipartite).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro