Maximum-Area Triangle in a Convex Polygon, Revisited

05/31/2017
by   Vahideh Keikha, et al.
0

We revisit the following problem: Given a convex polygon P, find the largest-area inscribed triangle. We show by example that the linear-time algorithm presented in 1979 by Dobkin and Snyder for solving this problem fails. We then proceed to show that with a small adaptation, their approach does lead to a quadratic-time algorithm. We also present a more involved O(n n) time divide-and-conquer algorithm. Also we show by example that the algorithm presented in 1979 by Dobkin and Snyder for finding the largest-area k-gon that is inscribed in a convex polygon fails to find the optimal solution for k=4. Finally, we discuss the implications of our discoveries on the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro