Matroidal structure of generalized rough sets based on symmetric and transitive relations

09/25/2012
by   Bin Yang, et al.
0

Rough sets are efficient for data pre-process in data mining. Lower and upper approximations are two core concepts of rough sets. This paper studies generalized rough sets based on symmetric and transitive relations from the operator-oriented view by matroidal approaches. We firstly construct a matroidal structure of generalized rough sets based on symmetric and transitive relations, and provide an approach to study the matroid induced by a symmetric and transitive relation. Secondly, this paper establishes a close relationship between matroids and generalized rough sets. Approximation quality and roughness of generalized rough sets can be computed by the circuit of matroid theory. At last, a symmetric and transitive relation can be constructed by a matroid with some special properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro