Matrix-product structure of constacyclic codes over finite chain rings F_p^m[u]/〈 u^e〉

03/03/2018
by   Yuan Cao, et al.
0

Let m,e be positive integers, p a prime number, F_p^m be a finite field of p^m elements and R=F_p^m[u]/〈 u^e〉 which is a finite chain ring. For any ω∈ R^× and positive integers k, n satisfying gcd(p,n)=1, we prove that any (1+ω u)-constacyclic code of length p^kn over R is monomially equivalent to a matrix-product code of a nested sequence of p^k cyclic codes with length n over R and a p^k× p^k matrix A_p^k over F_p. Using the matrix-product structures, we give an iterative construction of every (1+ω u)-constacyclic code by (1+ω u)-constacyclic codes of shorter lengths over R.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro