Mandarin-English Code-switching Speech Recognition with Self-supervised Speech Representation Models

10/07/2021
by   Liang-Hsuan Tseng, et al.
0

Code-switching (CS) is common in daily conversations where more than one language is used within a sentence. The difficulties of CS speech recognition lie in alternating languages and the lack of transcribed data. Therefore, this paper uses the recently successful self-supervised learning (SSL) methods to leverage many unlabeled speech data without CS. We show that hidden representations of SSL models offer frame-level language identity even if the models are trained with English speech only. Jointly training CTC and language identification modules with self-supervised speech representations improves CS speech recognition performance. Furthermore, using multilingual speech data for pre-training obtains the best CS speech recognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro