Legion: Best-First Concolic Testing

02/15/2020
by   Dongge Liu, et al.
0

Legion is a grey-box concolic tool that aims to balance the complementary nature of fuzzing and symbolic execution to achieve the best of both worlds. It proposes a variation of Monte Carlo tree search (MCTS) that formulates program exploration as sequential decisionmaking under uncertainty guided by the best-first search strategy. It relies on approximate path-preserving fuzzing, a novel instance of constrained random testing, which quickly generates many diverse inputs that likely target program parts of interest. In Test-Comp 2020, the prototype performed within 90

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro