Learning to Perform Downlink Channel Estimation in Massive MIMO Systems

09/06/2021
by   Amin Ghazanfari, et al.
0

We study downlink (DL) channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in a time-division duplex. The users must know their effective channel gains to decode their received DL data signals. A common approach is to use the mean value as the estimate, motivated by channel hardening, but this is associated with a substantial performance loss in non-isotropic scattering environments. We propose two novel estimation methods. The first method is model-aided and utilizes asymptotic arguments to identify a connection between the effective channel gain and the average received power during a coherence block. The second one is a deep-learning-based approach that uses a neural network to identify a mapping between the available information and the effective channel gain. We compare the proposed methods against other benchmarks in terms of normalized mean-squared error and spectral efficiency (SE). The proposed methods provide substantial improvements, with the learning-based solution being the best of the considered estimators.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro