Learning Task Specifications from Demonstrations via the Principle of Maximum Causal Entropy

In many settings (e.g., robotics) demonstrations provide a natural way to specify sub-tasks; however, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely composed and/or do not explicitly capture history dependencies. Motivated by this deficit, recent works have proposed specializing to task specifications, a class of Boolean non-Markovian rewards which admit well-defined composition and explicitly handle historical dependencies. This work continues this line of research by adapting maximum causal entropy inverse reinforcement learning to estimate the posteriori probability of a specification given a multi-set of demonstrations. The key algorithmic insight is to leverage the extensive literature and tooling on reduced ordered binary decision diagrams to efficiently encode a time unrolled Markov Decision Process.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro