Learning generic feature representation with synthetic data for weakly-supervised sound event detection by inter-frame distance loss

11/02/2020
by   Yuxin Huang, et al.
0

Due to the limitation of strong-labeled sound event detection data set, using synthetic data to improve the sound event detection system performance has been a new research focus. In this paper, we try to exploit the usage of synthetic data to improve the feature representation. Based on metric learning, we proposed inter-frame distance loss function for domain adaptation, and prove the effectiveness of it on sound event detection. We also applied multi-task learning with synthetic data. We find the the best performance can be achieved when the two methods being used together. The experiment on DCASE 2018 task 4 test set and DCASE 2019 task 4 synthetic set both show competitive results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro