Learning by tracking: Siamese CNN for robust target association

04/26/2016
by   Laura Leal-Taixé, et al.
0

This paper introduces a novel approach to the task of data association within the context of pedestrian tracking, by introducing a two-stage learning scheme to match pairs of detections. First, a Siamese convolutional neural network (CNN) is trained to learn descriptors encoding local spatio-temporal structures between the two input image patches, aggregating pixel values and optical flow information. Second, a set of contextual features derived from the position and size of the compared input patches are combined with the CNN output by means of a gradient boosting classifier to generate the final matching probability. This learning approach is validated by using a linear programming based multi-person tracker showing that even a simple and efficient tracker may outperform much more complex models when fed with our learned matching probabilities. Results on publicly available sequences show that our method meets state-of-the-art standards in multiple people tracking.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro