LAMP: Label Augmented Multimodal Pretraining

12/08/2020
by   Jia Guo, et al.
0

Multi-modal representation learning by pretraining has become an increasing interest due to its easy-to-use and potential benefit for various Visual-and-Language (V-L) tasks. However its requirement of large volume and high-quality vision-language pairs highly hinders its values in practice. In this paper, we proposed a novel label-augmented V-L pretraining model, named LAMP, to address this problem. Specifically, we leveraged auto-generated labels of visual objects to enrich vision-language pairs with fine-grained alignment and correspondingly designed a novel pretraining task. Besides, we also found such label augmentation in second-stage pretraining would further universally benefit various downstream tasks. To evaluate LAMP, we compared it with some state-of-the-art models on four downstream tasks. The quantitative results and analysis have well proven the value of labels in V-L pretraining and the effectiveness of LAMP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro