KnowDA: All-in-One Knowledge Mixture Model for Data Augmentation in Few-Shot NLP

06/21/2022
by   Yufei Wang, et al.
0

This paper focuses on text data augmentation for few-shot NLP tasks. The existing data augmentation algorithms either leverage task-independent heuristic rules (e.g., Synonym Replacement) or fine-tune general-purpose pre-trained language models (e.g., GPT2) using a small training set to produce new synthetic data. Consequently, these methods have trivial task-specific knowledge and are limited to yielding low-quality synthetic data for weak baselines in simple tasks. To combat this issue, we propose the Knowledge Mixture Data Augmentation Model (KnowDA): an encoder-decoder LM pretrained on a mixture of diverse NLP tasks using Knowledge Mixture Training (KoMT). KoMT is a training procedure that reformulates input examples from various heterogeneous NLP tasks into a unified text-to-text format and employs denoising objectives in different granularity to learn to generate partial or complete samples. With the aid of KoMT, KnowDA could combine required task-specific knowledge implicitly from the learned mixture of tasks and quickly grasp the inherent synthesis law of the target task through a few given instances. To the best of our knowledge, we are the first attempt to scale the number of tasks to 100+ in multi-task co-training for data augmentation. Extensive experiments show that i) KnowDA successfully improves the performance of Albert and Deberta by a large margin on the FewGLUE benchmark, outperforming previous state-of-the-art data augmentation baselines; ii) KnowDA could also improve the model performance on the few-shot NER tasks, a held-out task type not included in KoMT.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro