Investigating Cross-Domain Behaviors of BERT in Review Understanding

06/27/2023
by   Albert Lu, et al.
0

Review score prediction requires review text understanding, a critical real-world application of natural language processing. Due to dissimilar text domains in product reviews, a common practice is fine-tuning BERT models upon reviews of differing domains. However, there has not yet been an empirical study of cross-domain behaviors of BERT models in the various tasks of product review understanding. In this project, we investigate text classification BERT models fine-tuned on single-domain and multi-domain Amazon review data. In our findings, though single-domain models achieved marginally improved performance on their corresponding domain compared to multi-domain models, multi-domain models outperformed single-domain models when evaluated on multi-domain data, single-domain data the single-domain model was not fine-tuned on, and on average when considering all tests. Though slight increases in accuracy can be achieved through single-domain model fine-tuning, computational resources and costs can be reduced by utilizing multi-domain models that perform well across domains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro