Inapproximability of Matrix p→ q Norms

02/21/2018
by   Vijay Bhattiprolu, et al.
0

We study the problem of computing the p→ q norm of a matrix A ∈ R^m × n, defined as A_p→ q := _x ∈ R^n ∖{0}Ax_q/x_p This problem generalizes the spectral norm of a matrix (p=q=2) and the Grothendieck problem (p=∞, q=1), and has been widely studied in various regimes. When p ≥ q, the problem exhibits a dichotomy: constant factor approximation algorithms are known if 2 ∈ [q,p], and the problem is hard to approximate within almost polynomial factors when 2 ∉ [q,p]. The regime when p < q, known as hypercontractive norms, is particularly significant for various applications but much less well understood. The case with p = 2 and q > 2 was studied by [Barak et al, STOC'12] who gave sub-exponential algorithms for a promise version of the problem (which captures small-set expansion) and also proved hardness of approximation results based on the Exponential Time Hypothesis. However, no NP-hardness of approximation is known for these problems for any p < q. We study the hardness of approximating matrix norms in both the above cases and prove the following results: - We show that for any 1< p < q < ∞ with 2 ∉ [p,q], A_p→ q is hard to approximate within 2^O(^1-ϵn) assuming NP ⊆ BPTIME(2^^O(1)n). This suggests that, similar to the case of p ≥ q, the hypercontractive setting may be qualitatively different when 2 does not lie between p and q. - For all p ≥ q with 2 ∈ [q,p], we show A_p→ q is hard to approximate within any factor than 1/(γ_p^*·γ_q), where for any r, γ_r denotes the r^th norm of a gaussian, and p^* is the dual norm of p.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro