How Does Disagreement Benefit Co-teaching?

01/14/2019
by   Xingrui Yu, et al.
0

Learning with noisy labels is one of the most important question in weakly-supervised learning domain. Classical approaches focus on adding the regularization or estimating the noise transition matrix. However, either a regularization bias is permanently introduced, or the noise transition matrix is hard to be estimated accurately. In this paper, following a novel path to train on small-loss samples, we propose a robust learning paradigm called Co-teaching+. This paradigm naturally bridges "Update by Disagreement" strategy with Co-teaching that trains two deep neural networks, thus consists of disagreement-update step and cross-update step. In disagreement-update step, two networks predicts all data first, and feeds forward prediction disagreement data only. Then, in cross-update step, each network selects its small-loss data from such disagreement data, but back propagates the small-loss data by its peer network and updates itself parameters. Empirical results on noisy versions of MNIST, CIFAR-10 and NEWS demonstrate that Co-teaching+ is much superior to the state-of-the-art methods in the robustness of trained deep models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro