High-dimensional nonparametric density estimation via symmetry and shape constraints

03/14/2019
by   Min Xu, et al.
0

We tackle the problem of high-dimensional nonparametric density estimation by taking the class of log-concave densities on R^p and incorporating within it symmetry assumptions, which facilitate scalable estimation algorithms and can mitigate the curse of dimensionality. Our main symmetry assumption is that the super-level sets of the density are K-homothetic (i.e. scalar multiples of a convex body K ⊆R^p). When K is known, we prove that the K-homothetic log-concave maximum likelihood estimator based on n independent observations from such a density has a worst-case risk bound with respect to, e.g., squared Hellinger loss, of O(n^-4/5), independent of p. Moreover, we show that the estimator is adaptive in the sense that if the data generating density admits a special form, then a nearly parametric rate may be attained. We also provide worst-case and adaptive risk bounds in cases where K is only known up to a positive definite transformation, and where it is completely unknown and must be estimated nonparametrically. Our estimation algorithms are fast even when n and p are on the order of hundreds of thousands, and we illustrate the strong finite-sample performance of our methods on simulated data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro