HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

03/24/2022
by   Pavel Andreev, et al.
0

Generative adversarial networks have recently demonstrated outstanding performance in neural vocoding outperforming best autoregressive and flow-based models. In this paper, we show that this success can be extended to other tasks of conditional audio generation. In particular, building upon HiFi vocoders, we propose a novel HiFi++ general framework for neural vocoding, bandwidth extension, and speech enhancement. We show that with the improved generator architecture and simplified multi-discriminator training, HiFi++ performs on par with the state-of-the-art in these tasks while spending significantly less memory and computational resources. The effectiveness of our approach is validated through a series of extensive experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro