HAVANA: Hierarchical and Variation-Normalized Autoencoder for Person Re-identification

01/06/2021
by   Jiawei Ren, et al.
1

Person Re-Identification (Re-ID) is of great importance to the many video surveillance systems. Learning discriminative features for Re-ID remains a challenge due to the large variations in the image space, e.g., continuously changing human poses, illuminations and point of views. In this paper, we propose HAVANA, a novel extensible, light-weight HierArchical and VAriation-Normalized Autoencoder that learns features robust to intra-class variations. In contrast to existing generative approaches that prune the variations with heavy extra supervised signals, HAVANA suppresses the intra-class variations with a Variation-Normalized Autoencoder trained with no additional supervision. We also introduce a novel Jensen-Shannon triplet loss for contrastive distribution learning in Re-ID. In addition, we present Hierarchical Variation Distiller, a hierarchical VAE to factorize the latent representation and explicitly model the variations. To the best of our knowledge, HAVANA is the first VAE-based framework for person ReID.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro