Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-tuned GPT

04/24/2023
by   Ruohong Zhang, et al.
0

Moreover, GPT-based zero-shot classification models tend to make independent predictions over test instances, which can be sub-optimal as the instance correlations and the decision boundaries in the target space are ignored. To address these difficulties and limitations, we propose a new approach to zero-shot text classification, namely , which leverages the strong generative power of GPT to assist in training a smaller, more adaptable, and efficient sentence encoder classifier with contrastive self-training. Specifically, GenCo applies GPT in two ways: firstly, it generates multiple augmented texts for each input instance to enhance the semantic embedding of the instance and improve the mapping to relevant labels; secondly, it generates augmented texts conditioned on the predicted label during self-training, which makes the generative process tailored to the decision boundaries in the target space. In our experiments, GenCo outperforms previous state-of-the-art methods on multiple benchmark datasets, even when only limited in-domain text data is available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro