Finite Cell Method for functionally graded materials based on V-models and homogenized microstructures

07/20/2020
by   Benjamin Wassermann, et al.
0

This paper proposes an extension of the finite cell method (FCM) to V-rep models, a novel geometric framework for volumetric representations. This combination of an embedded domain approach (FCM) and a new modeling framework (V-rep) forms the basis for an efficient and accurate simulation of mechanical artifacts, which are not only characterized by complex shapes but also by their non-standard interior structure. These objects gain more and more interest in the context of the new design opportunities opened by additive manufacturing, mainly when graded or micro-structured material is applied. Two different types of functionally graded materials (FGM) are considered: The first one, multi-material FGM, is described using the V-rep models' inherent property to assign different properties throughout the interior of a domain. The second, single-material FGM – which is heterogeneously micro-structured – characterizes the effective material behavior of representative volume elements by homogenization and performs large-scale simulations using the embedded domain approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro