Federated Learning over Next-Generation Ethernet Passive Optical Networks

09/29/2021
by   Oscar J. Ciceri, et al.
0

Federated Learning (FL) is a distributed machine learning (ML) type of processing that preserves the privacy of user data, sharing only the parameters of ML models with a common server. The processing of FL requires specific latency and bandwidth demands that need to be fulfilled by the operation of the communication network. This paper introduces a Dynamic Wavelength and Bandwidth Allocation algorithm for Quality of Service (QoS) provisioning for FL traffic over 50 Gb/s Ethernet Passive Optical Networks. The proposed algorithm prioritizes FL traffic and reduces the delay of FL and delay-critical applications supported on the same infrastructure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro