FedADMM: A Federated Primal-Dual Algorithm Allowing Partial Participation

03/28/2022
by   Han Wang, et al.
0

Federated learning is a framework for distributed optimization that places emphasis on communication efficiency. In particular, it follows a client-server broadcast model and is particularly appealing because of its ability to accommodate heterogeneity in client compute and storage resources, non-i.i.d. data assumptions, and data privacy. Our contribution is to offer a new federated learning algorithm, FedADMM, for solving non-convex composite optimization problems with non-smooth regularizers. We prove converges of FedADMM for the case when not all clients are able to participate in a given communication round under a very general sampling model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro