Feature Extraction Matters More: Universal Deepfake Disruption through Attacking Ensemble Feature Extractors

03/01/2023
by   Long Tang, et al.
0

Adversarial example is a rising way of protecting facial privacy security from deepfake modification. To prevent massive facial images from being illegally modified by various deepfake models, it is essential to design a universal deepfake disruptor. However, existing works treat deepfake disruption as an End-to-End process, ignoring the functional difference between feature extraction and image reconstruction, which makes it difficult to generate a cross-model universal disruptor. In this work, we propose a novel Feature-Output ensemble UNiversal Disruptor (FOUND) against deepfake networks, which explores a new opinion that considers attacking feature extractors as the more critical and general task in deepfake disruption. We conduct an effective two-stage disruption process. We first disrupt multi-model feature extractors through multi-feature aggregation and individual-feature maintenance, and then develop a gradient-ensemble algorithm to enhance the disruption effect by simplifying the complex optimization problem of disrupting multiple End-to-End models. Extensive experiments demonstrate that FOUND can significantly boost the disruption effect against ensemble deepfake benchmark models. Besides, our method can fast obtain a cross-attribute, cross-image, and cross-model universal deepfake disruptor with only a few training images, surpassing state-of-the-art universal disruptors in both success rate and efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro