Fast multi-agent temporal-difference learning via homotopy stochastic primal-dual optimization

08/07/2019
by   Dongsheng Ding, et al.
0

We consider a distributed multi-agent policy evaluation problem in reinforcement learning. In our setup, a group of agents with jointly observed states and private local actions and rewards collaborates to learn the value function of a given policy. When the dimension of state-action space is large, the temporal-difference learning with linear function approximation is widely used. Under the assumption that the samples are i.i.d., the best-known convergence rate for multi-agent temporal-difference learning is O(1/√(T)) minimizing the mean square projected Bellman error. In this paper, we formulate the temporal-difference learning as a distributed stochastic saddle point problem, and propose a new homotopy primal-dual algorithm by adaptively restarting the gradient update from the average of previous iterations. We prove that our algorithm enjoys an O(1/T) convergence rate up to logarithmic factors of T, thereby significantly improving the previously-known convergence results on multi-agent temporal-difference learning. Furthermore, since our result explicitly takes into account the Markovian nature of the sampling in policy evaluation, it addresses a broader class of problems than the commonly used i.i.d. sampling scenario. From a stochastic optimization perspective, to the best of our knowledge, the proposed homotopy primal-dual algorithm is the first to achieve O(1/T) convergence rate for distributed stochastic saddle point problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro