Eye Gaze Estimation: A Survey on Deep Learning-Based Approaches

04/21/2022
by   Dulani Meedeniya, et al.
0

Human gaze estimation plays a major role in many applications in human–computer interaction and computer vision by identifying the users’ point-of-interest. Revolutionary developments of deep learning have captured significant attention in gaze estimation literature. Gaze estimation techniques have progressed from single-user constrained environments to multi-user unconstrained environments with the applicability of deep learning techniques in complex unconstrained environments with extensive variations. This paper presents a comprehensive survey of the single-user and multi-user gaze estimation approaches with deep learning. State-of-the-art approaches are analysed based on deep learning model architectures, coordinate systems, environmental constraints, datasets and performance evaluation metrics. A key outcome from this survey realizes the limitations, challenges and future directions of multi-user gaze estimation techniques. Furthermore, this paper serves as a reference point and a guideline for future multi-user gaze estimation research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro