Exploring Cross-Point Embeddings for 3D Dense Uncertainty Estimation

09/29/2022
by   Kaiwen Cai, et al.
0

Dense prediction tasks are common for 3D point clouds, but the inherent uncertainties in massive points and their embeddings have long been ignored. In this work, we present CUE, a novel uncertainty estimation method for dense prediction tasks of 3D point clouds. Inspired by metric learning, the key idea of CUE is to explore cross-point embeddings upon a conventional dense prediction pipeline. Specifically, CUE involves building a probabilistic embedding model and then enforcing metric alignments of massive points in the embedding space. We demonstrate that CUE is a generic and effective tool for dense uncertainty estimation of 3D point clouds in two different tasks: (1) in 3D geometric feature learning we for the first time obtain well-calibrated dense uncertainty, and (2) in semantic segmentation we reduce uncertainty`s Expected Calibration Error of the state-of-the-arts by 43.8 are estimated without compromising predictive performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro