Evaluating Machines by their Real-World Language Use

04/07/2020
by   Rowan Zellers, et al.
0

There is a fundamental gap between how humans understand and use language – in open-ended, real-world situations – and today's NLP benchmarks for language understanding. To narrow this gap, we propose to evaluate machines by their success at real-world language use – which greatly expands the scope of language tasks that can be measured and studied. We introduce TuringAdvice, a new challenge for language understanding systems. Given a complex situation faced by a real person, a machine must generate helpful advice. We make our challenge concrete by introducing RedditAdvice, a dataset and leaderboard for measuring progress. Though we release a training set with 600k examples, our evaluation is dynamic, continually evolving with the language people use: models must generate helpful advice for recently-written situations. Empirical results show that today's models struggle at our task, even those with billions of parameters. The best model, a finetuned T5, writes advice that is at least as helpful as human-written advice in only 9 performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro