Enhancing Pseudo Label Quality for Semi-SupervisedDomain-Generalized Medical Image Segmentation

01/21/2022
by   Huifeng Yao, et al.
12

Generalizing the medical image segmentation algorithms tounseen domains is an important research topic for computer-aided diagnosis and surgery. Most existing methods requirea fully labeled dataset in each source domain. Although (Liuet al. 2021b) developed a semi-supervised domain general-ized method, it still requires the domain labels. This paperpresents a novel confidence-aware cross pseudo supervisionalgorithm for semi-supervised domain generalized medicalimage segmentation. The main goal is to enhance the pseudolabel quality for unlabeled images from unknown distribu-tions. To achieve it, we perform the Fourier transformationto learn low-level statistic information across domains andaugment the images to incorporate cross-domain information.With these augmentations as perturbations, we feed the inputto a confidence-aware cross pseudo supervision network tomeasure the variance of pseudo labels and regularize the net-work to learn with more confident pseudo labels. Our methodsets new records on public datasets,i.e., M Ms and SCGM.Notably, without using domain labels, our method surpassesthe prior art that even uses domain labels by 11.67 avail-able after the conference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro