Efficient Stackelberg Strategies for Finitely Repeated Games

We study the problem of efficiently computing optimal strategies in asymmetric leader-follower games repeated a finite number of times, which presents a different set of technical challenges than the infinite-horizon setting. More precisely, we give efficient algorithms for finding approximate Stackelberg equilibria in finite-horizon repeated two-player games, along with rates of convergence depending on the horizon T. We give two algorithms, one computing strategies with an optimal 1/T rate at the expense of an exponential dependence on the number of actions, and another (randomized) approach computing strategies with no dependence on the number of actions but a worse dependence on T of 1/T^0.25. Both algorithms build upon a linear program to produce simple automata leader strategies and induce corresponding automata best-responses for the follower. We complement these results by showing that approximating the Stackelberg value in three-player finite-horizon repeated games is a computationally hard problem via a reduction from the balanced vertex cover problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro