Efficient Integration of Multi-channel Information for Speaker-independent Speech Separation

05/23/2020
by   Yuichiro Koyama, et al.
0

Although deep-learning-based methods have markedly improved the performance of speech separation over the past few years, it remains an open question how to integrate multi-channel signals for speech separation. We propose two methods, namely, early-fusion and late-fusion methods, to integrate multi-channel information based on the time-domain audio separation network, which has been proven effective in single-channel speech separation. We also propose channel-sequential-transfer learning, which is a transfer learning framework that applies the parameters trained for a lower-channel network as the initial values of a higher-channel network. For fair comparison, we evaluated our proposed methods using a spatialized version of the wsj0-2mix dataset, which is open-sourced. It was found that our proposed methods can outperform multi-channel deep clustering and improve the performance proportionally to the number of microphones. It was also proven that the performance of the late-fusion method is consistently higher than that of the single-channel method regardless of the angle difference between speakers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro