Deep Reinforcement Learning for Fog Computing-based Vehicular System with Multi-operator Support

04/04/2020
by   Xiaohan Zhang, et al.
0

This paper studies the potential performance improvement that can be achieved by enabling multi-operator wireless connectivity for cloud/fog computing-connected vehicular systems. Mobile network operator (MNO) selection and switching problem is formulated by jointly considering switching cost, quality-of-service (QoS) variations between MNOs, and the different prices that can be charged by different MNOs as well as cloud and fog servers. A double deep Q network (DQN) based switching policy is proposed and proved to be able to minimize the long-term average cost of each vehicle with guaranteed latency and reliability performance. The performance of the proposed approach is evaluated using the dataset collected in a commercially available city-wide LTE network. Simulation results show that our proposed policy can significantly reduce the cost paid by each fog/cloud-connected vehicle with guaranteed latency services.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro