Deep Poselets for Human Detection

07/02/2014
by   Lubomir Bourdev, et al.
0

We address the problem of detecting people in natural scenes using a part approach based on poselets. We propose a bootstrapping method that allows us to collect millions of weakly labeled examples for each poselet type. We use these examples to train a Convolutional Neural Net to discriminate different poselet types and separate them from the background class. We then use the trained CNN as a way to represent poselet patches with a Pose Discriminative Feature (PDF) vector -- a compact 256-dimensional feature vector that is effective at discriminating pose from appearance. We train the poselet model on top of PDF features and combine them with object-level CNNs for detection and bounding box prediction. The resulting model leads to state-of-the-art performance for human detection on the PASCAL datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro