CSGNet: Neural Shape Parser for Constructive Solid Geometry

12/22/2017
by   Gopal Sharma, et al.
0

We present a neural architecture that takes as input a 2D or 3D shape and induces a program to generate it. The in- structions in our program are based on constructive solid geometry principles, i.e., a set of boolean operations on shape primitives defined recursively. Bottom-up techniques for this task that rely on primitive detection are inherently slow since the search space over possible primitive combi- nations is large. In contrast, our model uses a recurrent neural network conditioned on the input shape to produce a sequence of instructions in a top-down manner and is sig- nificantly faster. It is also more effective as a shape detec- tor than existing state-of-the-art detection techniques. We also demonstrate that our network can be trained on novel datasets without ground-truth program annotations through policy gradient techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro