Cross-Resolution Adversarial Dual Network for Person Re-Identification and Beyond

02/19/2020
by   Yu-Jhe Li, et al.
0

Person re-identification (re-ID) aims at matching images of the same person across camera views. Due to varying distances between cameras and persons of interest, resolution mismatch can be expected, which would degrade re-ID performance in real-world scenarios. To overcome this problem, we propose a novel generative adversarial network to address cross-resolution person re-ID, allowing query images with varying resolutions. By advancing adversarial learning techniques, our proposed model learns resolution-invariant image representations while being able to recover the missing details in low-resolution input images. The resulting features can be jointly applied for improving re-ID performance due to preserving resolution invariance and recovering re-ID oriented discriminative details. Extensive experimental results on five standard person re-ID benchmarks confirm the effectiveness of our method and the superiority over the state-of-the-art approaches, especially when the input resolutions are not seen during training. Furthermore, the experimental results on two vehicle re-ID benchmarks also confirm the generalization of our model on cross-resolution visual tasks. The extensions of semi-supervised settings further support the use of our proposed approach to real-world scenarios and applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro