Cross-Enhancement Transformer for Action Segmentation

05/19/2022
by   Jiahui Wang, et al.
0

Temporal convolutions have been the paradigm of choice in action segmentation, which enhances long-term receptive fields by increasing convolution layers. However, high layers cause the loss of local information necessary for frame recognition. To solve the above problem, a novel encoder-decoder structure is proposed in this paper, called Cross-Enhancement Transformer. Our approach can be effective learning of temporal structure representation with interactive self-attention mechanism. Concatenated each layer convolutional feature maps in encoder with a set of features in decoder produced via self-attention. Therefore, local and global information are used in a series of frame actions simultaneously. In addition, a new loss function is proposed to enhance the training process that penalizes over-segmentation errors. Experiments show that our framework performs state-of-the-art on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities and the Breakfast dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro