Communication-Efficient Design for Quantized Decentralized Federated Learning

03/15/2023
by   Wei Liu, et al.
0

Decentralized federated learning (DFL) is a variant of federated learning, where edge nodes only communicate with their one-hop neighbors to learn the optimal model. However, as information exchange is restricted in a range of one-hop in DFL, inefficient information exchange leads to more communication rounds to reach the targeted training loss. This greatly reduces the communication efficiency. In this paper, we propose a new non-uniform quantization of model parameters to improve DFL convergence. Specifically, we apply the Lloyd-Max algorithm to DFL (LM-DFL) first to minimize the quantization distortion by adjusting the quantization levels adaptively. Convergence guarantee of LM-DFL is established without convex loss assumption. Based on LM-DFL, we then propose a new doubly-adaptive DFL, which jointly considers the ascending number of quantization levels to reduce the amount of communicated information in the training and adapts the quantization levels for non-uniform gradient distributions. Experiment results based on MNIST and CIFAR-10 datasets illustrate the superiority of LM-DFL with the optimal quantized distortion and show that doubly-adaptive DFL can greatly improve communication efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro