Collaborative Filtering with Graph-based Implicit Feedback

03/09/2018
by   Minzhe Niu, et al.
0

Introducing consumed items as users' implicit feedback in matrix factorization (MF) method, SVD++ is one of the most effective collaborative filtering methods for personalized recommender systems. Though powerful, SVD++ has two limitations: (i). only user-side implicit feedback is utilized, whereas item-side implicit feedback, which can also enrich item representations, is not leveraged;(ii). in SVD++, the interacted items are equally weighted when combining the implicit feedback, which can not reflect user's true preferences accurately. To tackle the above limitations, in this paper we propose Graph-based collaborative filtering (GCF) model, Weighted Graph-based collaborative filtering (W-GCF) model and Attentive Graph-based collaborative filtering (A-GCF) model, which (i). generalize the implicit feedback to item side based on the user-item bipartite graph; (ii). flexibly learn the weights of individuals in the implicit feedback hence improve the model's capacity. Comprehensive experiments show that our proposed models outperform state-of-the-art models.For sparse implicit feedback scenarios, additional improvement is further achieved by leveraging the step-two implicit feedback information.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro