Categorical Foundations of Explainable AI

04/27/2023
by   Pietro Barbiero, et al.
0

Explainable AI (XAI) aims to address the human need for safe and reliable AI systems. However, numerous surveys emphasize the absence of a sound mathematical formalization of key XAI notions – remarkably including the term “explanation” which still lacks a precise definition. To bridge this gap, this paper presents the first mathematically rigorous definitions of key XAI notions and processes, using the well-funded formalism of Category theory. We show that our categorical framework allows to: (i) model existing learning schemes and architectures, (ii) formally define the term “explanation”, (iii) establish a theoretical basis for XAI taxonomies, and (iv) analyze commonly overlooked aspects of explaining methods. As a consequence, our categorical framework promotes the ethical and secure deployment of AI technologies as it represents a significant step towards a sound theoretical foundation of explainable AI.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro