Butterfly: Robust One-step Approach towards Wildly-unsupervised Domain Adaptation

05/19/2019
by   Feng Liu, et al.
0

Unsupervised domain adaptation (UDA) trains with clean labeled data in source domain and unlabeled data in target domain to classify target-domain data. However, in real-world scenarios, it is hard to acquire fully-clean labeled data in source domain due to the expensive labeling cost. This brings us a new but practical adaptation called wildly-unsupervised domain adaptation (WUDA), which aims to transfer knowledge from noisy labeled data in source domain to unlabeled data in target domain. To tackle the WUDA, we present a robust one-step approach called Butterfly, which trains four networks. Specifically, two networks are jointly trained on noisy labeled data in source domain and pseudo-labeled data in target domain (i.e., data in mixture domain). Meanwhile, the other two networks are trained on pseudo-labeled data in target domain. By using dual-checking principle, Butterfly can obtain high-quality target-specific representations. We conduct experiments to demonstrate that Butterfly significantly outperforms other baselines on simulated and real-world WUDA tasks in most cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro