Bounding generalized coloring numbers of planar graphs using coin models

01/23/2022
by   Jesper Nederlof, et al.
0

We study Koebe orderings of planar graphs: vertex orderings obtained by modelling the graph as the intersection graph of pairwise internally-disjoint discs in the plane, and ordering the vertices by non-increasing radii of the associated discs. We prove that for every d∈ℕ, any such ordering has d-admissibility bounded by O(d/ln d) and weak d-coloring number bounded by O(d^4 ln d). This in particular shows that the d-admissibility of planar graphs is bounded by O(d/ln d), which asymptotically matches a known lower bound due to Dvořák and Siebertz.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro