Boosting the Performance of Object Tracking with a Half-Precision Particle Filter on GPU

08/01/2023
by   Gabin Schieffer, et al.
0

High-performance GPU-accelerated particle filter methods are critical for object detection applications, ranging from autonomous driving, robot localization, to time-series prediction. In this work, we investigate the design, development and optimization of particle-filter using half-precision on CUDA cores and compare their performance and accuracy with single- and double-precision baselines on Nvidia V100, A100, A40 and T4 GPUs. To mitigate numerical instability and precision losses, we introduce algorithmic changes in the particle filters. Using half-precision leads to a performance improvement of 1.5-2x and 2.5-4.6x with respect to single- and double-precision baselines respectively, at the cost of a relatively small loss of accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro