Bi-objective facility location in the presence of uncertainty

07/15/2020
by   Najmesadat Nazemi, et al.
0

Multiple and usually conflicting objectives subject to data uncertainty are main features in many real-world problems. Consequently, in practice, decision-makers need to understand the trade-off between the objectives, considering different levels of uncertainty in order to choose a suitable solution. In this paper, we consider a two-stage bi-objective location-allocation model to design a last-mile network in disaster relief where one of the objectives is subject to demand uncertainty. We analyze scenario-based two-stage risk-neutral stochastic programming, adaptive (two-stage) robust optimization, and a two-stage risk-averse stochastic approach using conditional value-at-risk (CVaR). To cope with the bi-objective nature of the problem, we embed these concepts into two criterion space search frameworks, the ϵ-constraint method and the balanced box method, to determine the Pareto frontier. We propose a decomposition-based algorithm to deal with the computationally challenging representation of the two-stage CVaR model. Additionally, a matheuristic technique is developed to obtain high-quality approximations of the Pareto frontier for large-size instances. Finally, we evaluate and compare the performance of the applied approaches based on real-world data from a Thies drought case, Senegal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro