Bi-fidelity conditional-value-at-risk estimation by dimensionally decomposed generalized polynomial chaos expansion

04/07/2022
by   Dongjin Lee, et al.
0

Digital twin models allow us to continuously assess the possible risk of damage and failure of a complex system. Yet high-fidelity digital twin models can be computationally expensive, making quick-turnaround assessment challenging. Towards this goal, this article proposes a novel bi-fidelity method for estimating the conditional value-at-risk (CVaR) for nonlinear systems subject to dependent and high-dimensional inputs. For models that can be evaluated fast, a method that integrates the dimensionally decomposed generalized polynomial chaos expansion (DD-GPCE) approximation with a standard sampling-based CVaR estimation is proposed. For expensive-to-evaluate models, a new bi-fidelity method is proposed that couples the DD-GPCE with a Fourier-polynomial expansions of the mapping between the stochastic low-fidelity and high-fidelity output data to ensure computational efficiency. The method employs a measure-consistent orthonormal polynomial in the random variable of the low-fidelity output to approximate the high-fidelity output. Numerical results for a structural mechanics truss with 36-dimensional (dependent random variable) inputs indicate that the DD-GPCE method provides very accurate CVaR estimates that require much lower computational effort than standard GPCE approximations. A second example considers the realistic problem of estimating the risk of damage to a fiber-reinforced composite laminate. The high-fidelity model is a finite element simulation that is prohibitively expensive for risk analysis, such as CVaR computation. Here, the novel bi-fidelity method can accurately estimate CVaR as it includes low-fidelity models in the estimation procedure and uses only a few high-fidelity model evaluations to significantly increase accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro