Back to square one: probabilistic trajectory forecasting without bells and whistles

12/07/2018
by   Ehsan Pajouheshgar, et al.
0

We introduce a spatio-temporal convolutional neural network model for trajectory forecasting from visual sources. Applied in an auto-regressive way it provides an explicit probability distribution over continuations of a given initial trajectory segment. We discuss it in relation to (more complicated) existing work and report on experiments on two standard datasets for trajectory forecasting: MNISTseq and Stanford Drones, achieving results on-par with or better than previous methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro