Anti-Aging Scheduling in Single-Server Queues: A Systematic and Comparative Study

03/09/2020
by   Zhongdong Liu, et al.
0

The Age-of-Information (AoI) is a new performance metric recently proposed for measuring the freshness of information in information-update systems. In this work, we conduct a systematic and comparative study to investigate the impact of scheduling policies on the AoI performance in single-server queues and provide useful guidelines for the design of AoI-efficient scheduling policies. Specifically, we first perform extensive simulations to demonstrate that the update-size information can be leveraged for achieving a substantially improved AoI compared to non-size-based (or arrival-time-based) policies. Then, by utilizing both the update-size and arrival-time information, we propose three AoI-based policies. Observing improved AoI performance of policies that allow service preemption and that prioritize informative updates, we further propose preemptive, informative, AoI-based scheduling policies. Our simulation results show that such policies empirically achieve the best AoI performance among all the considered policies. Interestingly, we also prove sample-path equivalence between some size-based policies and AoI-based policies. This provides an intuitive explanation for why some size-based policies, such as Shortest-Remaining-Processing-Time (SRPT), achieve a very good AoI performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro