An Educational System for Personalized Teacher Recommendation in K-12 Online Classrooms

07/15/2021
by   Jiahao Chen, et al.
5

In this paper, we propose a simple yet effective solution to build practical teacher recommender systems for online one-on-one classes. Our system consists of (1) a pseudo matching score module that provides reliable training labels; (2) a ranking model that scores every candidate teacher; (3) a novelty boosting module that gives additional opportunities to new teachers; and (4) a diversity metric that guardrails the recommended results to reduce the chance of collision. Offline experimental results show that our approach outperforms a wide range of baselines. Furthermore, we show that our approach is able to reduce the number of student-teacher matching attempts from 7.22 to 3.09 in a five-month observation on a third-party online education platform.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro