An Anchor-Free Detector for Continuous Speech Keyword Spotting

08/09/2022
by   Zhiyuan Zhao, et al.
0

Continuous Speech Keyword Spotting (CSKWS) is a task to detect predefined keywords in a continuous speech. In this paper, we regard CSKWS as a one-dimensional object detection task and propose a novel anchor-free detector, named AF-KWS, to solve the problem. AF-KWS directly regresses the center locations and lengths of the keywords through a single-stage deep neural network. In particular, AF-KWS is tailored for this speech task as we introduce an auxiliary unknown class to exclude other words from non-speech or silent background. We have built two benchmark datasets named LibriTop-20 and continuous meeting analysis keywords (CMAK) dataset for CSKWS. Evaluations on these two datasets show that our proposed AF-KWS outperforms reference schemes by a large margin, and therefore provides a decent baseline for future research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro