An Analysis of Categorical Distributional Reinforcement Learning

02/22/2018
by   Mark Rowland, et al.
0

Distributional approaches to value-based reinforcement learning model the entire distribution of returns, rather than just their expected values, and have recently been shown to yield state-of-the-art empirical performance. This was demonstrated by the recently proposed C51 algorithm, based on categorical distributional reinforcement learning (CDRL) [Bellemare et al., 2017]. However, the theoretical properties of CDRL algorithms are not yet well understood. In this paper, we introduce a framework to analyse CDRL algorithms, establish the importance of the projected distributional Bellman operator in distributional RL, draw fundamental connections between CDRL and the Cramér distance, and give a proof of convergence for sample-based categorical distributional reinforcement learning algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro