Algorithm Portfolio Design: Theory vs. Practice

02/06/2013
by   Carla P. Gomes, et al.
0

Stochastic algorithms are among the best for solving computationally hard search and reasoning problems. The runtime of such procedures is characterized by a random variable. Different algorithms give rise to different probability distributions. One can take advantage of such differences by combining several algorithms into a portfolio, and running them in parallel or interleaving them on a single processor. We provide a detailed evaluation of the portfolio approach on distributions of hard combinatorial search problems. We show under what conditions the protfolio approach can have a dramatic computational advantage over the best traditional methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro