Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields

12/22/2017
by   Rémi Le Priol, et al.
0

This work investigates training Conditional Random Fields (CRF) by Stochastic Dual Coordinate Ascent (SDCA). SDCA enjoys a linear convergence rate and a strong empirical performance for independent classification problems. However, it has never been used to train CRF. Yet it benefits from an exact line search with a single marginalization oracle call, unlike previous approaches. In this paper, we adapt SDCA to train CRF and we enhance it with an adaptive non-uniform sampling strategy. Our preliminary experiments suggest that this method matches state-of-the-art CRF optimization techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro